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Abstract-An analytical study is made into the process of heat transfer with the vapor condensation on a 
horizontal elliptical tube under the simultaneous effects of the forces of surface tension and gravity on the 
condensate film. Analytical expressions for both local condensate film thickness and heat transfer coefficient 
around the elliptical periphery have been derived under the effects of gravity and surface tension for various 
values of ellipticity, respectively. The dimensionless mean heat transfer coefficient - Nu for any ellipticity 
e and various Bond numbers Bo has been obtained ; however, it is almost unaffected by surface tension 
force due to surface curvature changing. For special objects (vertical plate e = 1, circular tube e = 0), the 

results are identical to some classical Nusselt-type solutions. 

1. INTRODUCTION 

A NUMBER of condensing systems, such as flat plates 

[l, 21, circular cylinders [3,4], spheres [5], and non- 
circular cylinders [6] have been extensively studied 
regarding the heat transfer process of film-wise 
condensation. This is true, for example, in space 
applications, in certain heat pipe configurations, 
and in chemical engineering processes. According to 
Semenov et al. [7], they found that if the contour of 
the cross-section of a non-circular horizontal tube on 
such condensation takes place is so elongated in the 
gravitational direction that its curvature decreases 
continuously from the upper generatrix to the lower 
generatrix of the tube, the condensation heat transfer 
is enhanced. 

Cheng and Tao [8] in 1987, and Wang et al. [9] in 
1988 have confirmed theoretically and experimentally 
that an elliptical tube did possess some advantages 
over a cylindrical one. However, they studied laminar 
film condensation on a horizontal elliptical tube on 
the basis of Nusselt theory under the effect of gravity 
force alone, and they miscalculated the mean con- 
densation coefficient h for an ellipse by using 

instead of taking an averaged value over the entire 
perimeter. It is to be noted that, for an elliptical tube, 
the radius of surface curvature is not a constant and 
cannot be omitted in evaluating ti. In addition to the 
effect of gravity force, there exists the effect of surface 
tension forces due to the non-uniform curvature of an 
elliptical surface on the film flow. Hence, we take into 
further account the effect of surface tension forces on 
the condensate film flow outside a horizontal elliptical 
tube. Besides, from the mathematical point of view, a 
circular tube is one kind of elliptical tube with zero 

ellipticity ; a flat plate is another kind of elliptical tube 
with ellipticity equal to one. Our major aim is expected 
to extend the horizontal elliptical tube in the engin- 
eering applications and also see the effect of surface 
curvature upon the heat transfer rate and hydro- 
dynamics characteristics. 

2. ANALYSIS 

Consider a horizontal elliptical tube, with major 
axis ‘2a’ in the direction of gravity and minor axis 
‘2b’, situated in a quiescent pure vapor which is at its 
saturation temperature T,,,. The wall temperature T, 

is uniform and below the saturation temperature. 
Thus, condensation occurs on the wall and a con- 
tinuous film of the liquid runs downward over the 
tube under the actions of the component of gravity, 
which is parallel to the tangent of the tube wall, and 
of the surface tension forces. 

The physical model under consideration is shown 
in Fig. 1 where the curvilinear coordinates (x, y) are 
aligned along the elliptical wall surface and its normal. 
Their corresponding velocities u and o are accordingly 
assigned. For a laminar, steady-state condensate film 
with constant fluid properties, the boundary layer 
equations governed by the basic conservation prin- 
ciples : mass, momentum, and energy are 

(1) 

where 4 = 4(x) is the angle between the horizontal 
direction and the tangent to the tube wall at the pos- 
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NOMENCLATURE 

; 

semi-major axis of ellipse T,;,, saturation temperature of vapor 
semi-minor axis of ellipse TW wall temperature 

B0 Bond number, (p-p,)ga’/a U velocity component in x direction 

C, specific heat of condensate at constant L’ velocity component in y direction 
pressure s coordinate measuring distance along 

D, equivalent diameter of elliptical tube, circumference from top of tube 
defined in equation (21) I’ coordinate normal to the elliptical 

e ellipticity of ellipse surface. 
F dimensionless function, defined in 

equation (20) 

9 acceleration due to gravity Greek symbols 
h condensing heat transfer coefficient at 6 thickness of condensate film 

angle $ 6* dimensionless thickness of condensate 
6 mean value of condensing heat transfer film, defined in equation (22) 

coefficient 0 angle measured from top of tube 

h& latent heat of condensation corrected for p absolute viscosity of condensate 
condensate subcooling P density of condensate 

JCl Jakob number, C,,( T,,, - T,)/h& PV density of vapor 
k thermal conductivity of condensate surface tension coefficient in the film 
1 length of flat plate ; angle between the tangent to tube surface 
ti condensate mass flow rate per unit length and the normal to direction of gravity 

of elliptical tube 4, critical angle making sin 4 + Bo( 4) = 0 
NM local Nusselt number, hD,/k cp inclined angle of flat plate with direction 
NM mean Nusselt number, r’iD,/k for elliptical of gravity. 

tube 

Nu, mean Nusselt number, /d/k for flat plate 
P static pressure of condensate Subscripts 
Pr Prandtl number I flat plate 
r radial distance from centroid of ellipse to sat saturation 

the tube wall V vapor 
R radius of elliptical surface curvature W tube wall. 

Ra Rayleigh number, (p - p,) pg Pr 02/p’ 
s dimensionless streamwise length, defined 

in equation (30) Superscripts 

Sr dimensionless integral function, defined * indicates dimensionless 
in equation (27) indicates average. 

ition (r,O). Here, f9 is the angle measured from the neglected, as is usual in Nusselt-type condensation 
tube upper generatrix; r is the radial distance from theory. The momentum and energy equations reduce 
the centroid of the ellipse and can be expressed as to 

r = a[(1 -e’)/(l -e* cos2S)]” 5 

where e = J(u’- b’)/a is the ellipticity. 
Owing to the very thin film thickness, compared 

with the radius of surface curvature, one may approxi- 
mately express the pressure gradient as 

3P 0 aR 

8X R2 ax 

where R, the radius of curvature of the ellipse at the 
position (r, 0) can be derived as 

1 +e2(e2 -2) cos* 0 1 3r2 

I-e2cos2fl . (6) 

and 

kc, 0. 
d$ (8) 

It is further assumed that at the interface no vapor 
shear is considered to exert upon the condensate. 
Thus, the boundary conditions are 

au 
-=O; T=T,,, aty=fi 
ay 

In free convection, inertia and convective terms are and 
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FIG. 1. Schematic and coordinate system for the condensate 
film flow on the elliptical surface. 

u = 0, T= T, aty = 0. (10) 

Consequently, the momentum and energy equa- 
tions can be solved as follows : 

(P-P&6* 
u= 

P 
[sin4+Bo(x)][$-k($J] (11) 

T= (T,,,-T,)~+T, (12) 

where 

Be(x) = &u/R)‘;; Bo = (p-p,)ga2/a 

the Bond number. With the help of equation (12), the 
heat flux at the liquid-vapor interface is related to the 
rate of condensation by 

where lit is the rate of the condensate mass flow over 
an elliptical perimeter per unit tube length, and 
/& = h,+0.68C,,(T,,- Tw), latent heat of con- 
densation corrected for condensate subcooling by 
Rohsenow [2]. Utilizing equation (ll), one obtains 
the local rate of the condensate mass flow per unit 
tube length as follows : 

ti = (P-Pv)Pg63 [sin $+Bo(x)]. (14) 
P 

In order to derive the local film thickness 6 at the 
circumferential arc length x (or angle 6) in terms of 
4, one can substitute equation (14) into equation (13) 
and obtain 

(15) 

It is more convenient at this point to express dx in 
polar coordinates. With reference to Fig. 1, the differ- 
ential elliptical arc length may be written as 

dx = 
rd6 

cos (4-Q’ 

By using the geometric relationship of an ellipse, it 
may be shown that the tangent at any point is given 
as 

tan f$ = tan e/(1 -e’). (17) 

Furthermore, with the help of equations (4) and 
(17) in equation (16) and in the pressure gradient term, 
one may obtain the following expressions in terms of 
eand$: 

dx = a[(1 -e’)/J((l- e2 sin2 4)‘)] d4 (18) 

and 

(19) 

Substituting equations (18) and (19) into equation 
(15), and introducing the transformation of the vari- 
able from x to 4, one can obtain the local film thick- 
ness at 0 as follows : 

where 

F(4) = [sin$+Bo(4)]-‘I’ 2(1-e2) 
i s 

0’ [sin I#J 

114 

+Bo(cj)]“‘(l -e2 sin’ 4)‘j2 d+ 
1 

. 

It is to be noted that the above relation applies to the 
angles from 4 = 0 to &( < K). The critical angle, d,, 
is the root of sin 4 + Bo( 4) = 0. For 4 2 4c, since the 
condensate film layer is dripping off the tube, F(4) 
and 6 are considered as infinity. In order to compare 
with circular tubes, based on the same condensing 
area, or the same perimeter per unit length of tube, one 
may express the film thickness in terms of equivalent 
diameter D, 

D,=2! 
s 

n [(I -e2)/,/((1 -e2 sin2 $)‘)I d$ 
w 0 

(21) 

and obtain the local dimensionless film thickness 
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I,4 

/j(( 1 -,’ sin* b)‘)] dd, . (22) 

Similar to equation (20), the above relation also 
applies to the angles from # = 0 to &.. After the 
critical angte (tp, < # 6 rr), the condensate is dripping 
off the tube. Hence, during the performing of cal- 
culation of equation (22), after this singularity 
4 = #c, F(4) and S should be considered as infinity 
because the assumption of equation (5) does not apply 
for the infinite value of 6. Hence, the.locai heat transfer 
coethcient at a particular angle 4 < 4, may be ex- 
pressed as 

and 

h=O ford,acPc. 

Consequently, the local dimensionless heat transfer 
coefficient may be obtained as 

NU = !.!$ = [RaJJG] 1*4/2j* (24) 

where 

Ra = (p-p,)pg Pr Dd/p” and 

Ja = CF(Ts,, - T,)/h&. 

Next, in the procedure to obtain the expression of 
the mean heat transfer coefficient, firstly, insertion of 
equation (14) into (15) gives 

x [sin qh+B0(#)1”~ -- 
(1 _c* sin2 d)3'* d4. 

Integration of the above equation from Q, = 0 to 
4 = n gives the condensate production from one side 
as 

where 

S,(e) = iS 9‘ [sin i#-i-&($)I’ 3 do 
-- “7 o (1 -e- sin’ 4)“’ 

. 

At last, the overall Nusselt number can then be pre- 
sented as follows : 

‘!4 [Ra,Ja] “4.S,(e). (28) 

In the limit case e = 1, it is noted that an elliptical 
tube becomes a vertical plate of both sides occuring 
condensation. Hence, its equivalent diameter becomes 
D, = 2(&r). Here, 1 is the length of the vertical plate. 
Therefore, one should use I instead of D, for Ra and 
Nu in equation (28) and may obtain the same form as 
Nusselt’s solution, i.e. 

I%, = i = 0.943[Ra/Ja] “4. (29) 

3. RESULTS AND DISCUSSION 

Equation (22) has been evaluated numerically for 
different values of ellipticity and reciprocality of Bn 

at any particular angular position 4, and its cor- 
responding dimensionless streamwise length s. 

s = ZxlxD, = 
i 

d(1 -e* sin* 4)-“’ dd 

IS ’ (1 -e* sin’ d) -3!2 d$. (30) 
0 

The above results are shown in Figs. 2 and 3(a)-(c). 

l/B0 -0 

% [sin #+Bo($)]“~ 'Q3.0 

. (25) 

Noting that the above relation gives only half of the 
condensate mass fIow from the tube, one finds that an 
energy balance within the condensate film over an 
entire elliptical perimeter per unit tube length yields 

2tih& = &cD,)(T,,, - T,). (26) 

Secondly, inserting equation (25) into (26), one may 
obtain the mean heat transfer coefficient as 

2.0 

1.0 

I I t I I I t I I 
0% 01 oa0.3040.5o .6 0.7 0 8 

* ~i~=u~f~~=~ti~l position, S’ 
0.9 1.0 

FIG. 2. Dependence of dimensionless local film thickness on 
ellipticity around periphery of ellipse. 
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When e = 0 (circular tube), the dependence of dimen- 
sionless film thickness on dimensionless streamwise 
length (or angle) coincides with Nusselt’s solution. It 

is noted that, in this case, the surface tension term 
Bo( 4) automatically vanishes. As e approaches 1, 6 * 
at the top (S = 0) becomes close to 0, which is the 
same as in the vertical plate. Figures 3(a)-(c) show 
that in the upper half of the tube, the positive effect of 
surface tension forces, owing to the decreasing surface 
curvature, pulls the condensate film down and, thus, 
makes the condensate film thinner. However, in the 
lower half of the tube, the increasing surface curvature 
makes the film thicker than the one without con- 
sidering effect of surface tension, i.e. the negative pres- 
sure gradient (- dP/ax < 0) due to the reverse effect 
of surface tension Bo( 4) < 0, tends to retard the con- 
densate film flow down and thus accumulate the con- 
densate mass. Once the condensate mass gravity for- 
ces outweigh its surface tension forces, the condensate 
will drip off the tube surface. Thus, for the cases 

l/Be # 0, condensate drips off the tube at 4 = & 
more ahead than at 4 = n in the case l/Be = 0. 

Next, the dependence of local heat transfer co- 
efficient on ellipticity and the reciprocal of Bo around 

the periphery of the ellipse is shown in Figs. 4(a)-(c) 
and 5. It may be seen that the local heat transfer 
coefficients increase with increasing ellipticity near 
both the top and bottom of the tube significantly for 
l/Be = 0. Besides, the local Nusselt number also in- 

creases as l/Be increases in the upper half of the tube 
because there exists an additional effective action of 
surface tension forces Bo( $) > 0 due to the increasing 
radius of surface curvature. In the lower half of the 

tube, however, the pressure gradient term (- c?P/dx) is 
negative since Bo( 4) is negative due to the decreasing 
radius of the surface curvature. This negative pressure 
gradient caused by the reversal surface tension effect 
will retard the condensate film flow down and 
accumulate the mass, and subsequently, the film will 
become thicker than the case l/Be = 0. Consequently, 
Nu decreases with the increase of l/Be. 

(cl 

around periphery of ellipse. 

‘-?I.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 
circumferential pa&ion, s 

According to numerical results from equation (28), 
the mean heat transfer coefficient is nearly unaffected 
by surface tension forces at small ellipticity e but is 
somewhat influenced at large e for the whole perimeter 
(0 < 4 < n). However, since the present model takes 
no account of contribution to the overall mean heat 
transfer coefficient after the separation point (4 2 4,) 
due to 6 approaching infinity, this causes a difference 
between the cases l/Be = 0 and l/Be # 0, especially 
for larger e. For example, for a horizontal elliptical 
tube with a vertical major axis and e = 0.9, its overall 

mean heat transfer coefficient decreases less than 16% 
as l/Be goes from 0 to 0.01. But, if integrated with 
respect to the same base, before the separation point 
0 < q5 < 4, (or 0 < s < s,), the effect of surface ten- 
sion force upon the mean heat transfer coefficient will 
normally be less than the no surface tension case by 
2% or so. In other words, if further included, the 
contribution of the neglected condensate mass after 

FIG. 3. Effect of surface tension on local film thickness 
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FIG. 5. Dependence of dimensionless local heat transfer on 
ellipticity around periphery of ellipse. 

the separation point, the difference based on the whole 
perimeter between the cases l/Be = 0 and l/Be # 0 
will locate in the range from about 2% to 16% in 
evaluating the overall mean heat transfer coefficient. 
In Fig. 6, the mean heat transfer coefficient for an 
ellipse with its major axis oriented in the direction of 
gravity is compared with that for an ellipse with its 
minor axis oriented in the direction of gravity. In the 
former case, Nu increases with increasing e very slowly 
at small e, and at much greater pace at large e. When 
L’ = 0, it is identical to Nusselt’s solution for a circular 
tube. 

As for the inclined flat plate, except the horizontal 
case cp = 7r/2, taking the limit e = 1 for the major axis 
inclined at a specified angle cp with the direction of 
gravity yields 

NM, = ‘I( = 0.943 cos q[Ra/Ja] ‘,14. 

0.6 
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< 
I- 

%0.6 
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20.4 
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For the excluded case of the horizontal flat plate, the (2) Unlike the Nusselt model, considering the 
condensate film flows by the aid of a pressure gradient gravity drain alone, the present analysis considers 
due to variations of the film thickness. This effect of both the gravity and surface tension forces. The results 
film thickness varying is the only action to make the indicate the surface tension has an influence on the 
film flow in this case (for more details, please see local heat transfer rate and hydrodynamics charac- 
our paper ref. [lo]), but it is neglected, based on the teristics, but the effect of surface tension force on the 
assumption S CC R in the present model. So the present mean heat transfer coefficient is nearly insignificant 
analysis does not include the horizontal flat plate case. especially for small ellipticity. 

4. CONCLUDING REMARKS 

This is the first analytical approach to resolve the 
laminar film condensation outside a horizontal ellip- 
tical tube by introducing the role of ellipticity. It 
should be noted that the numerical results use Nusselt 
numbers based on an equal condensing area diameter 
rather than a hydraulic diameter. The result obtained 
only applies to the very slow or quiescent vapor con- 
densing outside horizontal elliptical tubes and also 
very long inclined circular tubes (see ref. [6]), with 
negligible interfacial vapor shear drag. Because in the 
range near the angle C$ = C#J= which the film drops off 
the tube surface and its film surface is changing from 
‘convex’ to ‘concave’, neglecting the film thickness 
compared with the radius of the elliptical surface cur- 
vature in calculating the effect of surface tension might 
cause error, the present theory cannot predict the 
surface tension correctly for C#J, < C/J < n. Thus, for 
4, < 4 < R, we do not use F( 4) to express 6( 4) but 
simply consider 6( 4) to be infinite because the film is 
dripping off the tube. In a similar case for a circular 
tube, Taghavi [l 1] confirmed the good significance 
concerning the effect of neglected film thickness on the 
mean heat transfer coefficient. Two major conclusions 
are warranted in the present study. 

(1) The condensation heat transfer performance 
of the horizontal elliptical tube surface with vertical 
major axis is superior to those of the circular tube 
surface and horizontal tubes with inclined major axis. 
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